4,389 research outputs found

    Reference correlation of the viscosity of ortho-xylene from 273 K to 673 K and up to 110 MPa

    Get PDF
    A new correlation for the viscosity of ortho-xylene (o-xylene) is presented. The correlation is based upon a body of experimental data that has been critically assessed for internal consistency and for agreement with theory. It is applicable in the temperature range from 273 to 673 K at pressures up to 110 MPa. The overall uncertainty of the proposed correlation, estimated as the combined expanded uncertainty with a coverage factor of 2, varies from 1% for the viscosity at atmospheric pressure to 5% for the highest temperatures and pressures of interest. Tables of the viscosity generated by the relevant equations, at selected temperatures and pressures and along the saturation line, are provided

    Sample entropy analysis of EEG signals via artificial neural networks to model patients' consciousness level based on anesthesiologists experience.

    Get PDF
    Electroencephalogram (EEG) signals, as it can express the human brain's activities and reflect awareness, have been widely used in many research and medical equipment to build a noninvasive monitoring index to the depth of anesthesia (DOA). Bispectral (BIS) index monitor is one of the famous and important indicators for anesthesiologists primarily using EEG signals when assessing the DOA. In this study, an attempt is made to build a new indicator using EEG signals to provide a more valuable reference to the DOA for clinical researchers. The EEG signals are collected from patients under anesthetic surgery which are filtered using multivariate empirical mode decomposition (MEMD) method and analyzed using sample entropy (SampEn) analysis. The calculated signals from SampEn are utilized to train an artificial neural network (ANN) model through using expert assessment of consciousness level (EACL) which is assessed by experienced anesthesiologists as the target to train, validate, and test the ANN. The results that are achieved using the proposed system are compared to BIS index. The proposed system results show that it is not only having similar characteristic to BIS index but also more close to experienced anesthesiologists which illustrates the consciousness level and reflects the DOA successfully.This research is supported by the Center forDynamical Biomarkers and Translational Medicine, National Central University, Taiwan, which is sponsored by Ministry of Science and Technology (Grant no. MOST103-2911-I-008-001). Also, it is supported by National Chung-Shan Institute of Science & Technology in Taiwan (Grant nos. CSIST-095-V301 and CSIST-095-V302)

    Resonant Subband Landau Level Coupling in Symmetric Quantum Well

    Full text link
    Subband structure and depolarization shifts in an ultra-high mobility GaAs/Al_{0.24}Ga_{0.76}As quantum well are studied using magneto-infrared spectroscopy via resonant subband Landau level coupling. Resonant couplings between the 1st and up to the 4th subbands are identified by well-separated anti-level-crossing split resonance, while the hy-lying subbands were identified by the cyclotron resonance linewidth broadening in the literature. In addition, a forbidden intersubband transition (1st to 3rd) has been observed. With the precise determination of the subband structure, we find that the depolarization shift can be well described by the semiclassical slab plasma model, and the possible origins for the forbidden transition are discussed.Comment: 4 pages, 2 figure

    The d* dibaryon in the extended quark-delocalization, color-screening model

    Get PDF
    The quark-delocalization, color-screening model, extended by inclusion of a one-pion-exchange (OPE) tail, is applied to the study of the deuteron and the d* dibaryon. The results show that the properties of the deuteron (an extended object) are well reproduced, greatly improving the agreement with experimental data as compared to our previous study (without OPE). At the same time, the mass and decay width of the d* (a compact object) are, as expected, not altered significantly.Comment: 9 pages, no figures, LaTeX, subm. to Phys. Rev.

    Transmission Investment and Expansion Planning in Electricity Market Environment

    Get PDF
    One of the most serious challenges for power industry restructuring is to maintain power system reliability at an acceptable level and to promote the overall economic efficiency of the whole power industry. To this end, transmission investment and expansion is inevitable. In the past decade, much effort has been made to address institutional structures, business models, incentives and regulation to assure appropriate transmission investments be made, and to develop workable assessment and planning methods for the deregulated environment. In this paper, a comprehensive survey is made on the state-of-the-art of several important issues associated with transmission investment and expansion planning in the electricity market environment, including: challenges of transmission investment and planning in the competitive market environment; transmission investment; merchant transmission; transmission rights; business models; transmission regulation; management of transmission investment and expansion; transmission planning methods; international experience.8 輸電監管在電力市場環境下,仍然需要對輸電系統進行監管,因為其仍具有自然壟斷特征,且要為實現公平競爭提供必要的場所。輸電監管的一個主要目標就是要促使輸電系統在滿足給定的可靠性要求的同時使經濟成本最低或經濟效益最高,例如使系統以最小的總成本向用戶供電。具體來講,對基于管制的輸電投資與擴展規劃進行監管的主要目的是降低未來不能有效利用輸電設備的風險,而對基于市場驅動的輸電投資與擴展規劃進行監管的主要目的是遏制有損整體社會福利的輸電投資

    The d' dibaryon in the quark-delocalization, color-screening model

    Full text link
    We study the questions of the existence and mass of the proposed d(IJP=00)d' (IJ^P=00^-) dibaryon in the quark-delocalization, color-screening model (QDCSM). The transformation between physical and symmetry bases has been extended to the cases beyond the SU(2) orbital symmetry. Using parameters fixed by baryon properties and NNNN scattering, we find a mild attraction in the IJP=00IJ^P=00^- channel, but it is not strong enough to form a deeply bound state as proposed for the dd' state. Nor does the (isospin) I=2 NΔ\Delta configuration have a deeply bound state. These results show that if a narrow dibaryon dd' state does exist, it must have a more complicated structure.Comment: 12 pp. latex, no figs., 2 tables, additional refs., Report-no was adde

    Interdependent network reciprocity in evolutionary games

    Get PDF
    Besides the structure of interactions within networks, also the interactions between networks are of the outmost importance. We therefore study the outcome of the public goods game on two interdependent networks that are connected by means of a utility function, which determines how payoffs on both networks jointly influence the success of players in each individual network. We show that an unbiased coupling allows the spontaneous emergence of interdependent network reciprocity, which is capable to maintain healthy levels of public cooperation even in extremely adverse conditions. The mechanism, however, requires simultaneous formation of correlated cooperator clusters on both networks. If this does not emerge or if the coordination process is disturbed, network reciprocity fails, resulting in the total collapse of cooperation. Network interdependence can thus be exploited effectively to promote cooperation past the limits imposed by isolated networks, but only if the coordination between the interdependent networks is not disturbe

    Zika virus impairs the development of blood vessels in a mouse model of congenital infection

    Get PDF
    Zika virus (ZIKV) is associated with brain development abnormalities such as primary microcephaly, a severe reduction in brain growth. Here we demonstrated in vivo the impact of congenital ZIKV infection in blood vessel development, a crucial step in organogenesis. ZIKV was injected intravenously in the pregnant type 2 interferon (IFN)-deficient mouse at embryonic day (E) 12.5. The embryos were collected at E15.5 and postnatal day (P)2. Immunohistochemistry for cortical progenitors and neuronal markers at E15.5 showed the reduction of both populations as a result of ZIKV infection. Using confocal 3D imaging, we found that ZIKV infected brain sections displayed a reduction in the vasculature density and vessel branching compared to mocks at E15.5; altogether, cortical vessels presented a comparatively immature pattern in the infected tissue. These impaired vascular patterns were also apparent in the placenta and retina. Moreover, proteomic analysis has shown that angiogenesis proteins are deregulated in the infected brains compared to controls. At P2, the cortical size and brain weight were reduced in comparison to mock-infected animals. In sum, our results indicate that ZIKV impairs angiogenesis in addition to neurogenesis during development. The vasculature defects represent a limitation for general brain growth but also could regulate neurogenesis directly

    Evanescent light-matter Interactions in Atomic Cladding Wave Guides

    Full text link
    Alkali vapors, and in particular rubidium, are being used extensively in several important fields of research such as slow and stored light non-linear optics3 and quantum computation. Additionally, the technology of alkali vapors plays a major role in realizing myriad industrial applications including for example atomic clocks magentometers8 and optical frequency stabilization. Lately, there is a growing effort towards miniaturizing traditional centimeter-size alkali vapor cells. Owing to the significant reduction in device dimensions, light matter interactions are greatly enhanced, enabling new functionalities due to the low power threshold needed for non-linear interactions. Here, taking advantage of the mature Complimentary Metal-Oxide-Semiconductor (CMOS) compatible platform of silicon photonics, we construct an efficient and flexible platform for tailored light vapor interactions on a chip. Specifically, we demonstrate light matter interactions in an atomic cladding wave guide (ACWG), consisting of CMOS compatible silicon nitride nano wave-guide core with a Rubidium (Rb) vapor cladding. We observe the highly efficient interaction of the electromagnetic guided mode with the thermal Rb cladding. The nature of such interactions is explained by a model which predicts the transmission spectrum of the system taking into account Doppler and transit time broadening. We show, that due to the high confinement of the optical mode (with a mode area of 0.3{\lambda}2), the Rb absorption saturates at powers in the nW regime.Comment: 10 Pages 4 Figures. 1 Supplementar
    corecore